
Research Statement

Chengyuan Deng

My research is dedicated to building the theoretical foundations for the new arenas of modern algorithm design.
The rapid emergence of massive, complex and sensitive data has created a new frontier of computational chal-
lenges, demanding solutions beyond the traditional models and analytical methodologies. From the data-informed
algorithmic perspective, the challenges naturally unfold through the following sequence of stages:

• Access to massive data. Modern datasets are produced at unprecedented scale and speed, often in streaming,
dynamic, or distributed settings. The central task is to develop algorithms that can interact with such data
efficiently, making useful computations possible within tight resource constraints.

• Understanding the inherent structure. Large datasets are complex but often shaped by underlying algebraic,
combinatorial, geometric, or probabilistic patterns. Revealing and formalizing these structures is key to design-
ing algorithms that are effective, interpretable, and widely applicable.

• Responsible release of information. Algorithms transform data into knowledge, which in turn raises the need
to carefully regulate what is disclosed, particularly in the presence of sensitive content. This calls for frameworks
that safeguard trustworthy considerations, while releasing reliable information with rigorous guarantees.

During doctoral study, my work confronts challenges along this pipeline, grounding scalability, explainability,
data geometry, and privacy within the framework of algorithm design. First, towards learning under limited
access, my research explores streaming and property testing models on the problem of correlation clustering.
Our algorithms achieve a favorable approximation with resources significantly smaller than the input size. Second,
my research aims to understand the role of data geometry in fundamental problems such as dimension reduction,
nearest neighbor search and design algorithms tailored to the geometry. Further, my research borrows tools from
combinatorial discrepancy theory to understand the structural complexity of shortest paths, which turns out to
have an impact on differential privacy, falling into the regime of responsible release. Finally, under the umbrella
of differential privacy, my research investigates a few problems such as range query and hierarchical clustering.

Efficient Algorithms for Structural Balance and Correlation Clustering

In correlation clustering, we are given a complete graph with binary labels. The objective of clustering is to
partition the vertices into clusters (size unknown) such that the number of negative edges across clusters and
positive edges inside the same clusters are minimized. If the number of clusters is fixed as k = 2, this is known as
structural balance from social science community.

Streaming Algorithms for Structural Balance. We develop streaming algorithms on two tasks: (i) detecting
whether a given graph is balanced, and (ii) finding a partition that approximates the clustering objective. The
goal is to use limited resources on storage. For the first, we employ pseudorandom generators for low-degree
polynomials, which require only O(log n) memory; For the second, we achieve (1 + ϵ)-approximation with Õ(n)
memory by improving the Giotis-Guruswami algorithm [GG05] and simulation with graph streams.

Property Testing for Correlation Clustering. In property testing, we consider the query model with access
to the adjacency matrix. The goal is to determine if the input graph admits a 0-cost clustering solution or ε-far
from it. Our main result is a simple Θ(1/ε) query complexity algorithm for structural balance, and O(1/ε2) query
complexity for correlation clustering.

The related publications are recognized by Random [AAD+23] and in submission.
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Dimension Reduction Beyond Euclidean Geometry

Traditional dimension reduction techniques have two assumptions: (i) the data points lie in Euclidean space, and
(ii) the coordinates of all points are available. Many real-world applications do not satisfy these two conditions.
First, the geometry is often non-Euclidean such as cosine similarity, Jaccard index, etc. Second, high-dimensional
coordinates may be unavailable or costly to obtain, whereas pairwise distances are easier to access. Therefore, we
study dimension reduction techniques to address these challenges. We consider the input is a symmetric hollow
dissimilarity matrix D, with only two assumptions for the dissimilarity measure: Dij = Dji and Dii = 0.

Non-Euclidean Johnson-Lindenstrauss Lemma. JL lemma states that random linear projection can achieve
dimension reduction in Euclidean space, while preserving pairwise distances up to (1 ± ε) factor. We study JL
transform in the above setting and present two approaches. In both approaches, we generalize the Euclidean norm
ℓ2 to to capture the data geometry, together with parameters indicating how far it deviates from Euclidean geometry.

The first approach captures D as vectors in pseudo-Euclidean space. Here the distance between two vectors
x, y is given by a bilinear form of signature (p, q): ⟨x, y⟩p,q =

∑p
i=1 xiyi −

∑p+q
i=p+1 xiyi. When p = n, q = 0, it

is the squared Euclidean norm. We interpret the parameter p resembling and q negating the Euclidean space. Our
result is fine-grained, indicating Dij can be preserved with at most 1 ± ε · Cij multiplicative factor, where Cij is
the ratio of the squared Euclidean distance and squared (p, q) distance.

Our second approach is via power distance. We prove D can be written as a generalized power distance matrix
of n points {pi} with the same radius r =

√
|en|/2, where en is the smallest eigenvalue of the Gram matrix of D.

We can then apply the JL transform on the ball centers (i.e. {pi}). The new JL lemma has an extra additive term
of 4εr2, with (1± ε) multiplicative factor preserved for every Dij .

Non-Euclidean Multi-dimensional Scaling. MDS is another widely-used dimension reduction method. The
algorithm selects top k largest eigenvalues of the Gram matrix to produce low-dimensional vectors. We extend
MDS to the same setting above, and prove an optimal algorithm of selecting both negative and positive eigenvalues,
with the aim of minimizing the ”distortion”. The approach is also based on pseudo-Euclidean bilinear forms.

Locality Sensitive Hashing in Hyperbolic Space. LSH is directly motivated from the approximate nearest
neighbor search (ANNS) problem [IM98] and has broad applications. It ensures that close pairs of points are
likely to be hashed into the same bucket, while distant pairs are not. It can be interpreted as a dimension reduction
technique to discrete 1D, but with a relaxed goal. LSH has been well-studied in Hamming space and Euclidean
space [DIIM04, AI08, MNP06, OWZ14]. We extend it into Hyperbolic space. The performance of LSH is gov-
erned by ρ, which gives query time O(nρ) for c-approximate NNS. We design a Hyperbolic LSH with upper bound
ρ ≤ 1/c and a lower bound of ρ ≥ 1/c2. The Euclidean LSH has ρ ≈ Θ(1/c2).

The related publications are recognized by Neurips [DGL+24, DGL+25] and in preparation.

The Discrepancy of Shortest Paths

Combinatorial discrepancy theory aims to express the complexity of a set system. We study the discrepancy of
shortest path systems to understand its structural property. We show that any system of unique shortest paths
in an undirected weighted graph has hereditary discrepancy Θ̃(n1/4), on the lower bound side improving upon
Ω(n1/6) [CL00]. Meanwhile, we demonstrate an arbitrary path system has hereditary discrepancy of Θ̃(

√
n),

therefore showing a clear separation between arbitrary paths and shortest paths.
The discrepancy result demonstrates the inherent structural complexity of shortest paths, and interestingly

sheds light on other applications. An immediate implication is on two problems in differential privacy: DP All
Pairs Shortest Distances and DP All Sets Range Query. The discrepancy lower bound implies an Ω̃(n1/4) lower
bound of additive error on two problems, which is currently the best known lower bound.

The related publications are recognized by WADS [DGUW23], ICALP [BDG+24] and ITCS [ABD+24].

Empirical Works on Machine Learning, Datasets, LLMs

I collaborate closely with industry and care about the empirical performance of algorithms.
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OpenFWI: First Open-source platform for Full Waveform Inversion. Full Waveform Inversion is a tech-
nique in Geoscience to understand the subsurface structure. In recent years data-driven methods are developed for
the task but almost no public datasets. We build a large-scale public platform [DFW+22, FWD+23] that provides
datasets, tutorials, baseline implementations and a Kaggle competition to facilitate future research. They have
significant impact in the AI for science community.

Change Point Detection. Online CPD aims to identify abrupt changes in multivariate time series. Accuracy
and efficiency are the key desired properties. We develop a simple algorithm [DCZ+24] inspired by the Riemannian
geometry of correlation matrices. It is able to detect changes on both marginal and joint distribution.

Large Language Models. With collaborators, I conduct surveys of LLMs on domain specialization [LZL+23]
and ethical issues [DDJ+25]. The former received attention from the U.S. presidential annual report in 2024.
Concrete technical projects are ongoing, including privacy audit of LLMs and cognitive obstacles in VLMs.

The related publications are recognized by Neurips [DFW+22, FWD+23], CIKM [DCZ+24], Journal of
computing surveys, Journal of AI and Ethics, and in submission.

Future Research Directions

I envision a future of algorithm design shaped by principles that unify classical theory with the challenges of mod-
ern computation and data. I see them as mutually reinforcing. Therefore my future research is on this playground
focusing on two topics: Theoretical foundations of learning problems and Graph algorithms. Both lines of
research consider the challenges about data in its three stages as discussed at the beginning of this statement.

• Theoretical Foundations of Learning Problems. I view this direction with two major aspects: (1) learning
problems without an established theoretical framework (2) learning problems with theoretical frameworks (e.g.,
k-clustering, PCA, SVM) to be extended in new challenging scenarios. Here are a few concrete proposals:

1. Objective framework for metric-based hierarchical clustering and density-based clustering.
Dasgupta’s framework [Das16] formalizes similarity-based hierarchical clustering, but many real-world
datasets are measured with explicit distance metrics, such as Euclidean or cosine similarity. While dis-
tances can sometimes be transformed into similarities via kernels, no universal transformation preserves
theoretical guarantees. Similarly, density-based clustering methods (e.g., DBSCAN, OPTICS) are widely
used in practice but lack a formal objective function that captures their behavior and quality. These two
topics fall into the first category: building theoretical frameworks for learning problems.

2. Learning under limited access: sublinear algorithms, oracle-query, and property testing. The three
models are different but related towards the same goal: scalability with approximation guarantee. The
first proposal is a follow-up on Property Testing for Correlation Clustering. My doctoral work focuses
on the standard CC with binary edge labels and our current results are not tight. Beyond closing the
gap, we can study chromatic CC, where edges have multiple label classes, or weighted CC, where edge
weights take values in (0, 1). A central question is whether one can design property testers with query
complexity O(1/poly(1/ε)) that distinguish between graphs that admit a good clustering and those that are
ε-far. The second proposal is Learning-Augmented Algorithms. Learning-augmented oracles arise from
the availability of machine learning models that provide predictions. While numerous offline problems
have been studied in this framework, there is significant potential in extending these ideas to more general
domains, such as online combinatorial optimization and dynamic graph algorithms. Moreover, developing
lower bound techniques for learning-augmented algorithms remains an open and promising direction.

3. Geometry-grounded learning algorithms. My doctoral works explore dimension reduction with different
geometric assumptions. In fact, many fundamental problems such as clustering, nearest neighbor search
exhibit inherent geometric structure, whether in Euclidean, Hyperbolic, or general non-Euclidean spaces.
My future research on this line aims to understand the behavior of geometry deviating from Euclidean
to highly non-Euclidean, and its impact on these problems. Meanwhile, the goal of geometric-inspired
algorithms is to improve efficiency, approximation, and interpretability.
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• Graph Algorithms Beyond general interest in all graph problems (matching, cut, coloring, flow...) and graph-
related structures (spanner, distance oracle, hopset...) in various computation models (streaming, dynamic, dis-
tributed...), I highlight a few directions that I intend to pursue.

1. Shortest Paths and Beyond. Our understanding on shortest path remains very limited. Textbook algorithms
give O(m) time for SSSP, however the conjecture if APSP requires Ω(mn) time remains unsolved. Our
understanding of shortest paths still lacks a detailed grasp of their combinatorial structures, such as how they
overlap and deviate systematically. This is the potential key to downstream algorithms such as differentially
private APSD, which still remains a quadratic gap. The same set of questions can be asked for the All k-tuples
minimum steiner tree problems, does all-triple require Ω(n4) time? How does k impact the hardness? How
are these problems connected to the matrix multiplication progress? Resolving these questions is my major
pursuit on shortest paths.
Meanwhile, I welcome new problems motivated from other algorithmic problems or real-world applications.
A concrete new problem I want to work on is Distributed Restricted Shortest Paths. Shortest path problems
are central in Congest model, because they reveal the cost of local-to-global propagation. Restricted SSSP
have two edge weights: the weight to compute distance and the cost. The paths cannot have costs higher than
a threshold. The goal is to minimize rounds of computation while maintaining a good (approximate) solution.

2. Graph Decomposition. Expander decomposition gathers much interest recently and becomes an essential
building block for efficient graph algorithms. It is certainly interesting to push forward its limits, and explore
more applications. There are many other decompositions, such as k-core decomposition, sparse-dense de-
composition, balanced partition, etc. They are proposed in different context, and I would like to investigate
potential relationships among them.

Conclusive Remarks

Thank you for reading thus far. I would like to conclude with a few thoughts that reflect my research philosophy
and personal motivations.

• Happiest moments in research: Finding out deep connections between two research topics that appear
irrelevant from their own context.

• Which type of researcher? People say there are two types: researchers come into a field and solve every
open problem; or researchers open new fields. I see myself more in the latter.

• What professions would I pursue if not a researcher? A philosopher and a musician.
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